

LC2 Calculation Policy

Progression in Calculations

Introduction

This policy was created in response to a need across Learning Community 2 schools and after discussion between Headteachers; to have a standard calculation policy that met the National Curriculum guidelines and provided a consistent approach to calculation that could be used within year groups across LC2 schools and as a progression through the phases.

The policy has been developed with a concrete, pictorial and abstract (CPA) approach in order to scaffold and develop pupils' understanding. The CPA approach is relevant across all ages in order to secure understanding and gain conceptual and procedural fluency.

If children are not at age related expectations for their year the policy will be helpful in tracking back to previous learning. This will enable pupils to develop understanding of calculation methods rather than to have to memorise procedures.

We have given an indication of pitch for the stages in our calculation policy.

A note about carrying digits – the examples in this document reflect the variety of carrying methods used across schools.

LC2 Calculation Policy

<u>CONTENTS</u>	
<u>Page</u>	<u>Section</u>
1	LC2 Overview of Approaches by Year Group
2	Addition
10	Subtraction
16	Multiplication
22	Division
27	Appendix A – Progression in Difficulty in Calculations

		EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
⁴ aqi _{ti ay}	tations. Draw objects.	Combining sets (count all then count on). Partitioning sets and some part part whole. To use a number line practically to add. Use numbers to represent objects, to begin to record.	Combining two parts to make a whole. Part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Partitioning. Column method – no regrouping. Some exchange.	Column method with regrouping (up to 3 digits).	Column method with regrouping. (up to 4 digits).	Column method with regrouping (with more than 4 digits). Column method - decimals - with the same amount of decimal places.	Column method with regrouping. Column method - decimals - with different amounts of decimal places.
Subhaction	Use concrete & physical representations.	Partitioning. Physically take away objects. To use a number line practically to subtract. Use numbers to represent objects, to begin to record.	Taking away ones. Counting back. Find the difference. Part whole model. Make 10.	Counting back; counting on. Find the difference, part whole model, make 10. Column method - no regrouping. Some exchange.	Column method with regrouping (up to 3 digits).	Column method with regrouping (up to 4 digits).	Column method with regrouping (with more than 4 digits). Column method - decimals - with the same amount of decimal places	Column method with regrouping. Column method - decimals - with different amounts of decimal places.
Multiple align	songs. Practical. Mark making.	Doubling. Grouping - making equal groups.	Doubling. Equal groups. Counting in multiples. Arrays (with support).	Doubling /halving. Counting in multiples. Repeated addition arrays - showing commutative multiplication. Include x symbol.	Counting in multiples. Repeated addition Arrays - showing commutative multiplication. Grid method with apparatus.	Grid method (as a step towards long multiplication). Column multiplication. (2 and 3 digit multiplied by 1 digit).	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits). Decimals.	Column multiplication (multi digit up to 4 digits by a 2 digit number). Decimals.
División	Rhymes and s	Doubling/halving. Sharing. Grouping - making equal groups.	Sharing objects. Division as grouping into equal sized groups .	Doubling/halving. Division as grouping and sharing. Division within arrays. Bar model.	Division within arrays. Division with a remainder. Short division (2 digits by 1 digit - concrete and pictorial).	Division within arrays. Division with a remainder / as a fraction. Short division with regrouping (up to 3 digits by 1 digit- concrete and pictorial).	Short division. (up to 4 digits by a 1 digit number - interpret remainders appropriately for the context).	Short division. Long division (up to 4 digits by a 2 digit number - interpret remainders as whole numbers, fractions or round).

Year	Strategy/Approach	Concrete	Pictorial	Abstract
EYFS	Subitising	Children need to recognise a small group of objects/dots/fingers as the total without counting them	Use a range of resources e.g. stones before moving to recording	Pupils recognise amounts without counting.
EYFS Y1	Combining two parts to make a whole: part - whole model	<image/>	Image: state of the state of	Consideration is needed when to introduce symbols. 4 + 3 = 7 10 = 6 + 4 2 + 2 = 3 + 1 Use the part-part whole diagram as shown above to move into the abstract. Looking for patterns in calculations

Year	Strategy/Approach	Concrete	Pictorial	Abstract
		 Underlying skills: Number recognition 0 -10 and the Know that numbers identify how r Recognise numbers and represent Count objects accurately using one each object Know how to write each number Being able to count on from numb 	Vocabulary: add, more, and make, sum, altogether count on group how many? one more, two more, ten more, Same as	
EYFS Y1	Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	7+4 In jumps of one. 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer. 'Counting' could be automatic from fluency rather than in ones

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y1	Regrouping to make 10	6 + 5 = 11	Use pictures or a number line. Regroup or partition the smaller number to make 10	9 + 5 = 14 If I am at nine, how many more do I need to make 10? How many more do I need to add on now?
		Start with the bigger number and use the smaller number to make 10	9 + 5 = 14 $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+4$ $+1$ $+1$ $+1$ $+4$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$	
Y2	Adding three single digits	4 + 7 + 6 = 17 Put 4 and 6 together to make 10. Add on 7.		4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make 10 and then add on the remainder.
		Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	Emphasising the commutative nature/law 4 + 7 + 6 = 17 7 + 4 + 6 = 17 6 + 7 + 4 = 17

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y2	Partitioning	Using Dienes Blocks and Base 10	This stage will be used by some children.	64 + 32 = 96 $4 + 2 = 6$ $60 + 30 = 90$ <u>96</u> OR $60 + 30 = 90$ $4 + 2 = 6$ <u>96</u>
Υ2	Start of the vertical (column) method No exchange required WHEN CALCULATIONS ARE REPRESENTED VERTICALLY WE START WITH THE LEAST SIGNIFICANT DIGITS FIRST.	Tens Units Image: Constraint of the second state of the second sta	At this stage pupils can still link this method with partitioning and work with values of ones and tens. Example: 30 + 20 = 50 moving to include the language of 3t + 2t = 5t	24 + 62 = 88 No bridging

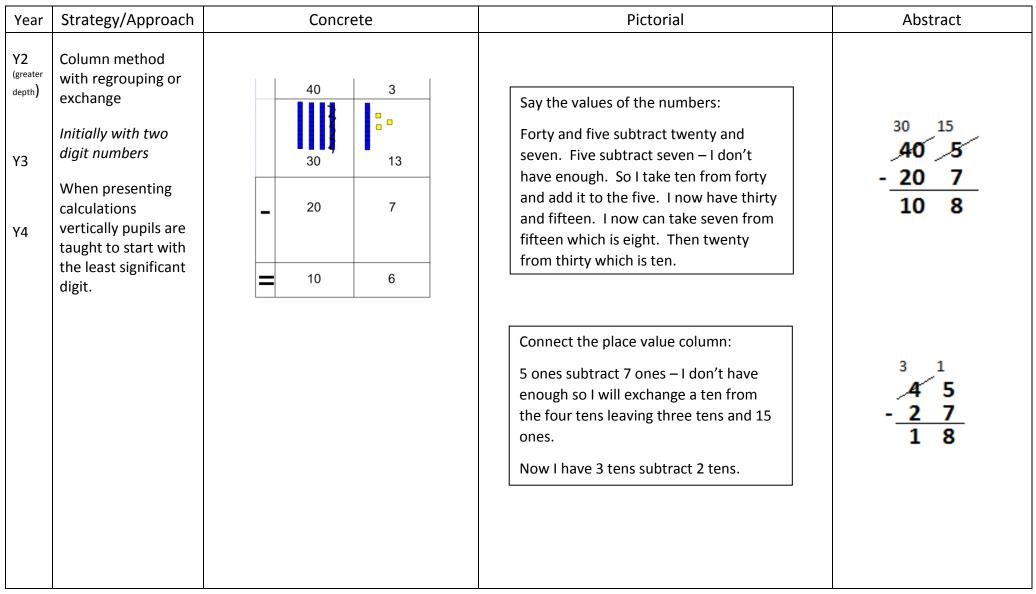
Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y2	Year 2: TO + TO with exchange (no exchange for expected at Y2 but with exchange for greater depth)	Use a range of apparatus – numicon, straws, beads etc.	Some pupils will need to make drawings to represent the concrete. App called Number Pieces	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $20 + 5$ $\frac{40 + 8}{60 + 13} = 73$
Y3	Column method- regrouping / exchange Year 3: HTO + HTO (no bridging) HTO + HTO (bridging)	Base 10 still needed at concrete stage, then PV counters if appropriate, then abstract. Begin with ones (always).	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. The language here needs to refer to the place value column For the example on the left the commentary includes 6 ones and 7 ones equals thirteen ones Four tens add two tens plus the extra one	Expanded method - to be shown as an option to bridge understanding between the pictorial and the abstractContracted method 536 + 536 + 536 + $110 (80 + 30)$ $500 (500)$ 621 11

Year	Strategy/Approach	Concrete			Pictorial	Abstract	
Υ4	Year 4: ThHTO + ThHTO (no carrying) ThHTO + ThHTO (carrying) Year 4 – need 4 digits + 4 digits (decimals too). Base 10 still needed at concrete stage, then PV counters, then abstract. Begin with ones (always).	Add up th for one 10 7 •	e units a		hange 10 ones	The language here needs to refer to the place value column For the example on the left the commentary includes 4 ones and 7 ones equals eleven ones Three tens add one ten plus the extra ten Six hundreds and five hundreds equal 11 hundreds etc	H T OH T O $5 3 6$ 85 $\frac{1}{6 2 1}$ $\frac{1}{5 36}$ $\frac{1}{235}$ $\frac{1235}{6 21}$ $\frac{1235}{7498}$ $\frac{1}{3733}$ $\frac{1235}{7498}$ $\frac{1}{3733}$ Some children may find place value column headings useful.As the children move on, introduce decimals with the same number of decimal places. Money can be used here.

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Year Y5	Strategy/Approach Add decimals to 1 and 2 decimal places	Concrete Demonstrate how to exchange across the columns so pupils understand the consistency in relationships in place value including decimals. As children move on to decimals, money and decimal place value counters can be used to support learning. Use money as a way in.	Pictorial Base 10 for decimals Use of place value counters can support pictorial representation of this.	72.8 +54.6 127.4 11 $\frac{\pounds 2 \ 3 \ . 5 \ 9}{+ \pounds \ 7 \ . 5 \ 5}$ $\frac{\pounds 3 \ 1 \ . 1 \ 4}{1 \ 1 \ 1}$ $\frac{26 \cdot 3}{+ 1 \ 4 \cdot 9}$ $\frac{+ 1 \ 4 \cdot 9}{4 \ 1 \cdot 2}$ $\frac{+ 1 \ 4 \cdot 9}{2 \ 6 \cdot 3}$ $+ 1 \ 4 \ \cdot 9$
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Year	Strategy/Approach		Pictorial					Abstract			
Y6	Decimals of differing digits Column method including carrying. Adding decimals of differing digits. H T O $\frac{1}{10}$ $\frac{1}{100}$			o show			o include th ting out cald	ne place valu culations.	e column	and the second sec	32 52 84 742 582
	Plac	ce Value				46.2	32				
	n Mil	M Hth Hundred Thousands 100 000	Ten Thousands Thou	T h Isands DOO	H Hundreds Hott	T Tens 10	O Ones 1	t Tenths 0.1	h Hundredths 0.01	th Thousandths 0.001	
						0					

Year	Strategy/Approach	Concrete	Pictorial	Abstract
EYFS	Taking away ones	In a practical context, use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	18 -3= 15
		4 - 2 = 2		8 – 2 = 6 (Consideration is needed as to when to use symbols).
EYFS Y1	Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13 - 4 = 9 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track. 9 10 11 12 13 14 15 Start at the bigger number and count back – become more efficient using number facts rather than counting in ones. -10	Put 13 in your head, count back 4. What number are you at? Use your fingers to help initially; then knowledge and fluency in number facts. <u>Y2</u> 57 - 23 57 - 20 - 3 37 - 3 34



Year	Strategy/Approach	Concrete	Pictorial	Abstract
Υ2	Partition numbers to use 10	Calculations below 30 Dienes blocks Base 10	13 - 7 = 6 3 4 - 3 - 3 - 4 - 3 - 3 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 3 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 3 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 3 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 3 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 3 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 5 - 16 - 17 - 18 - 19 - 20 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	16 – 8= How many do we take off to reach 10? How many do we have left to take off?
EYFS Y1 Y2	Part Part Whole Model	Link to addition - use the part part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Use a pictorial representation of objects to show the part part whole model. $() \qquad () \qquad$	5 10 Move to using numbers within the part whole model. 10-5=5

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Υ2	Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference.	 tisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers. 	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the numbers of sandwiches.
			Use basic bar models with items to find the difference.	
Y2 Y3	Column method: No need to regroup or exchange	Start with the ones, or smallest value. Don't write T/O above tens/ones when using the value of the whole number for example '40'. - 20 3 $- 20 4$	Pictorial representation of the concrete.	40 7 - 20 3 20 4

Column method with Y3 regrouping or exchange

Larger numbers

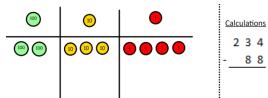
More than one exchange required

Extends to decimals

Year 3: HTO - HTO (no exchange)

HTO - HTO (exchange)

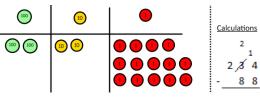
Y4

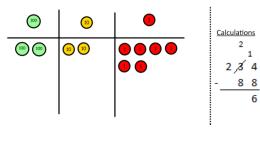

Year 4: ThHTO - ThHTO (one digit exchanging)

ThHTO - ThHTO (more than one digit exchanging)

Subtract decimals to 1 and then 2 decimal places.

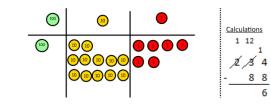
Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.


1 Make the larger number with the place value counters.

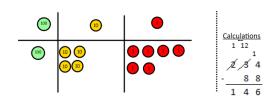

<u>2</u> Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens

for ten ones.

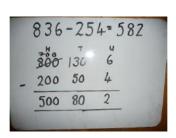
100



<u>3</u> Now I can subtract my ones.


4

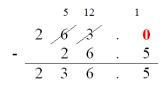
Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.



5

Now I can take away eight tens and complete my subtraction.

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.



Children can start their formal written method by partitioning the number into clear place value columns.

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

6

<u>Subtraction</u>

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y5	Further stages in the method Year 5: Calculations with more than 4 digits including decimals with same number of digits Year 6: Calculations including decimals with different decimal values Ensure vocabulary and language is consistent across year groups – for example, exchange, regroup, steal		$\frac{e \cdot q}{44 \times 12}$ $\frac{4 \times 12}{17 \cdot 6}$ $\frac{17 \cdot 6}{25 \cdot 6}$ $(43 \cdot 2 - 17 \cdot 6)$ $\frac{39}{44 \times 10}$ $\frac{39}{12}$ $\frac{136}{266}$ $(402 - 136)$	$\begin{array}{c} \underline{e_{9}} & \underline{47.12} - 13.7 \\ \underline{47.112} \\ 13.70 - \\ \hline 33.42 \\ \underline{e_{9}} \\ 316 \\ 1.47 \cdot 10.4 \\ \underline{29.6} \\ - \\ \hline 1.17.44 \end{array}$
		Some pupils may find it useful to continue with the place value column headings.	$43.7 - 3\% \longrightarrow 43.70$ $- 3.25$ $4 - 3.75 \longrightarrow 4.00$ $- 3.75$	

Year	Strategy/Approach	Concrete	Pictorial	Abstract
EYFS Y1	Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number.	
Y2			Double 4 is 8	
		double 4 is 8		²⁰ 12 32
		4 × 2 = 8		Partition a number and then double each part before recombining it back together.
Y1	Counting in multiples	50000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 -	man and and and	Count in multiples of a number aloud.
				Write sequences with multiples of numbers.
				2, 4, 6, 8, 10
		Count in multiples supported by	Use a number line or pictures to continue support in counting in multiples.	5, 10, 15, 20, 25 , 30
		Count in multiples supported by concrete objects in equal groups. Ensure that pupils do not count in ones.		

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Υ2	Repeated addition of equal groups	5 + 5 + 5	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $	Write addition sentences to describe objects and pictures.
Y2	Arrays – showing commutative multiplication	groups. Create arrays using counters/ cubes to show multiplication sentences.	Use arrays in different rotations to find commutative multiplication sentences. 4 × 2=8 2 × 4=8 2	Use an array to write multiplication sentences and reinforce repeated addition. 5+5+5=15 3+3+3+3+3=15 $5 \times 3 = 15$ $3 \times 5 = 15$

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y3	Towards column multiplication 2 digits x 1 digit	Children can continue to be supported by place value resources at this stage of multiplication. $4 \qquad 10 \qquad 3 \\ 4 \qquad 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 13 \\ x \underline{4} \\ 12 \\ \underline{40} \\ 52 \\ 13 x 4 = 52 \end{array} $
Y4	Towards column multiplication 2 and 3 digits multiplied by 1 digit		$3 \times 123 = 300 + 60 + 9$ $3 \times 123 = 300 + 60 + 9$ $3 \times 123 = 300 + 60 + 9$ $3 \times 123 = 300 + 60 + 9$ $1 (1 (1))$ $3 \times 100 = 300$ $3 \times 20 = 60$ $3 \times 3 = 9$	123 x <u>3</u> 9 60 + <u>300</u> 369

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y3 Y4	Towards column multiplication Up to 4 digits by 1 digit	$8 \times 23 \qquad \bigcirc $	$33 \times 4 \text{ (grid method)}$ $4 \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Expanded 33 x <u>4</u> 12 (4 x 3) <u>120</u> (4 x 30) <u>132</u>
Y5	Towards column multiplication	Grid towards long mu 24×16 4 20 4 10 200 40 6 120 24 ± 144 384	Iltiplication 2 4 24×16 becomes $\frac{x}{1}$ 1 6 $\frac{2}{2}$ 4 $\frac{2}{2}$ 4 (6x4) $\frac{\times}{1}$ 1 2 0 (6x20) $\frac{1}{3}$ 4 4 0 (10x4) $\frac{2}{3}$ 8 4 2 0 0 (10x20) Answer: 384 3 8 4 3 8 4	$ \begin{array}{r} +2 \\ 2 & 4 \\ x & 1 & 6 \\ \hline 1 & 4 & 4 \\ 2 & 4 & 0 \\ \hline 3 & 8 & 4 \end{array} $

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y5 Y6	Column multiplication	It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns.
		$4 \times 116 =$	<image/> <complex-block></complex-block>	If it helps, children can write out what they are solving next to their answer. $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Year	Strategy/Approach	Concrete	Pictorial	Abstract
				$ \begin{array}{r} +1 \\ +1 \\ +1 \\ 7 \\ 1 \\ 4 \\ 7 \\ x \\ 2 \\ 4 \\ +1 \\ 5 \\ 8 \\ 2 \\ 9 \\ 4 \\ 0 \\ 3 \\ 5 \\ 2 \\ 8 \\ 2 \\ 8 \\ 2 \\ 8 \\ 2 \\ 8 \\ 2 \\ 8 \\ 3 \\ 5 \\ 2 \\ 8 \\ 3 \\ 5 \\ 2 \\ 8 \\ 3 \\ 5 \\ 2 \\ 8 \\ 3 \\ 5 \\ 2 \\ 8 \\ 5 \\ 8 \\ 3 \\ 5 \\ 2 \\ 8 \\ 5 \\ 8 \\ 8 \\ 5 \\ 8 \\ 5 \\ 8 \\ 5 \\ 8 \\ 8 \\ 5 \\ 8 \\ 5 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 8 \\ 5 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$
Y6	Column multiplication Pupils using a column must always start from the right			1342 x 18 13420 13420 10736 24156

Year	Strategy/Approach	Concrete	Pictorial	Abstract
EYFS Y1	Sharing objects into equal groups	Image: second	Children use pictures or shapes to share quantities. Children use pictures or shapes to share quantities. 323	Share 9 buns between three people. $9 \div 3 = 3$ Introduce symbols when appropriate
Y1 Y2	Division as grouping Concrete in Y1 Moving to abstract in Y2	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 1000000000000000000000000000000000000	Use a number line to show jumps in groups. The number of jumps equals the number of groups. $\begin{array}{c} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \hline$	 28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group? 7 14 21 28 28 ÷ 7 = 4 2 4 6 8 10 10 ÷ 2 = 5 Consider in Y1 Expected in Y2

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y2	Division within arrays			Find the inverse of multiplication and division sentences by creating four linking number sentences.
		Link division to multiplication by creating an array and thinking about the number sentences that can be	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	7 x 4 = 28 4 x 7 = 28
		created.	Use and draw an array and use lines to split the	28 ÷ 7 = 4
		Eg: 15 ÷ 3 = 5 5 x 3 = 15	array into groups to make multiplication and division sentences.	28 ÷ 4 = 7
		15 ÷ 5 = 3 3 x 5 = 15		
Y2 (greater depth)	Division with a remainder	14 ÷ 3 = Divide objects into equal groups and see how much is left over.	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	Complete written divisions and show the remainder using r.
Y3			0 4 8 12 13 Initially draw dots and group them to divide an	$\begin{array}{l} 29 \div 8 = 3 \text{ REMAINDER 5} \\ \uparrow \uparrow \uparrow & \uparrow \\ \text{dividend divisor quotient} & \text{remainder} \end{array}$
		33 33 33	amount and clearly show a remainder.	
			() () () () () () () () () ()	
			Develop to more efficient recording as below.	
			$\begin{array}{c ccccc} 3 & 3 & 3 & 3 & 3 \\ 3 & 6 & 9 & 12 & 14 \end{array}$	

Year	Strategy/Approach	Concrete	Pictorial	Abstract
Y3	Start of chunking which develops to		<u>13 divided by 4</u> 4 13	It is important to develop efficiency.
	become more efficient		$\frac{0000}{-4}$	$21 \div 4 = 5 r 1 \qquad \textcircled{+}{9} 5 r 1$ $4 \boxed{21}$ $- 4 (1 \times 4)$
	Consider introducing the short division		$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc -4 \\ \hline 5 \end{array}$	$ \begin{array}{r} 17 \\ - 4 \\ 13 \\ - 4 \\ 9 \\ \end{array} (1 \times 4) $
	method		$\begin{array}{c} 5\\ 0000 -4\\ \hline 1 \end{array}$	$9 - 4 (1 \times 4) - 5 - 4 (1 \times 4) - 1 - 1 - 1 $
			"Can I make a group of 4?" "Can I make another group of 4?"	Becoming more efficient and progressing to: 5 r 1 <u>4121</u> <u>- 20 (5 x 4)</u> <u>1</u>
			4 1 3 - 1 2 1	12
	Division with a		24 divided by 5	12 6 72 -60 (10 x)
Y4	remainder/as a fraction	Short division becoming more efficient i.e. subracting in larger chunks.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 -12 (2 x) 0

Year Strate	tegy/Approach	Concrete	Pictorial	Abstract
 73 Division regroup (4 exchalintrod) 74 exchalintrod 75 Dividingits 	sion with ouping / lange is oduced in Y3/Y4 ding up to 4 s by a single using short	Base 10 – dienes Practical modelling of the example in the next column. Consider modelling process with smaller numbers to develop understanding.	Pictorial Short division with some understanding $47 \div 3 =$ $3 4 7$ spit the tens and group $47 \div 3 =$ $3 7$ Short division with some understanding $47 \div 3 =$ $3 7$ 7 7 Short division with some understanding 1 7 7 7	Abstract 98 ÷ 7 becomes 1 4 7 9 8 Answer: 14 432 ÷ 5 becomes 432 ÷ 5 becomes $\frac{8 6 r^2}{5 4 3 2}$ Answer: 86 remainder 2 496 ÷ 11 becomes $\frac{4 5 r 1}{1 4 9 5 6}$ Answer: 45 $\frac{1}{11}$

Year	Strategy/Approach	Concrete	Pictorial	Abstract
	Short division with larger numbers		Some children would benefit from the 'I Know' box.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Y5 Y6	Dividing 4 digits by 2 digits using long division		1738 ÷ 14 $14 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'I Know' boxes are used to find efficient answers e.g. first subtraction when dividing hundreds are likely to be hundreds/tens.

ADDITION	SUBTRACTION	
1. No exchange	1. No exchange	
2. Extra digit in the answer	2. Fewer digits in the answer	
3. Exchanging ones to tens	3. Exchanging tens for ones	
4. Exchanging tens to hundreds	4. Exchanging hundreds for tens	
5. Exchanging ones to tens and tens to hundreds	5. Exchanging hundreds to tens and tens to ones	
6. More than two numbers in calculation	6. As 5 but with different number of digits	
7. As 6 but with different number of digits	7. Decimals up to 2 decimal places (same number of decimal places)	
8. Decimals up to 2 decimal places (same number of decimal places)	8. Subtract two or more decimals with a range of decimal places	
9. Add two or more decimals with a range of decimal places		
SHORT MULTIPLICATION	SHORT DIVISION	
1. TO x O no exchange	1. TO ÷ O no exchange no remainder	
2. TO x O extra digit in the answer	2. TO ÷ O no exchange with remainder	
3. TO x O with exchange of ones into tens	3. TO ÷ O with exchange no remainder	
4. HTO x O no exchange	4. TO ÷ O with exchange, with remainder	
5. HTO x O with exchange of ones into tens	5. Zero in the quotient e.g. 816 ÷ 4 = 204	
6. HTO x O with exchange of tens into hundreds	6. As 1-5 HTO ÷ O	
7. HTO x O with exchange of ones into tens and tens into hundreds	7. As 1-5 greater number of digits ÷ O	
8. As 4-7 but with greater number digits x O	8. As 1-5 with a decimal dividend e.g. 7.5 ÷ 5 or 0.12 ÷ 3	
9. O.t x O no exchange	9. Where the divisor is a two-digit number	
10. O.t with exchange of tenths to ones	Demainders	
11. As 9 - 10 but with greater number of digits which may include a range of	<u>Remainders</u>	
decimal places x O	1. Whole number remainder	
	2. Remainder expressed as a fraction of the divisor	
	3. Remainder expressed as a simplified fraction	
	4. Remainder expressed as a decimal	